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a b s t r a c t 

Facial expression modeling is important for many applications such as human emotional analysis and 

facial animation. Generally, facial expression modeling from single 2D facial image is difficult. Different 

head poses and scales of facial data in images affect the accuracy of the modeling results. We propose 

a new 3D facial expression modeling method which is based on facial landmarks from single image. 

Using the facial landmarks, expression modeling can be processed in Kendall shape space. The Kendall 

shape space is mathematic space, the facial expression modeling process in Kendall shape space can be 

regarded as a geodesic path search between different faces. The modeling result is more accurate. The 3D 

facial expression modeling result is convenient to obtain from 2D facial image with different head poses. 

In experiments, we show the 3D facial expression modeling performance by our method, which include 

expression editing and evaluation in public facial database: JAFFE, LFW, Helen and RAF-DB. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Facial expression modeling has been researched for many years.

he related technologies are used in many applications such as

ace recognition, human emotional analysis, face track and 3D fa-

ial animation. Facial expression modeling constructs a standard

orm for different facial expressions. It provides the necessary tools

or facial expression quantitative analysis and synthesis. For 2D fa-

ial image, the facial expression modeling is difficult. The reason is

he facial image have different head poses and scales in generally.

n facial image, the geometric features are incomplete. To remove

he influence of head poses and scales, a 3D facial expression coun-

erpart should be reconstructed from 2D facial image. In 3D scene,

he facial data can be aligned by facial landmarks and the facial

xpression modeling result can be achieved. In summary, the core

roblem of facial expression modeling is constructing the 3D facial

xpression counterpart from a 2D image. 

The traditional methods of 3D facial expression counterpart re-

onstruction are based on facial landmarks fitting by energy func-
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ion [1,2] . The head poses and scales are considered in the en-

rgy function. Using different energy optimization methods (least

quare, gradient descent), a 3D facial expression counterpart can

e computed from a 2D facial image. However, such methods have

ignificant drawbacks. Firstly, the computation cost of the methods

s huge. The fitting process includes four degrees of freedom: iden-

ity, expression, head pose and scale. It increases the complexity of

nergy function. Secondly, the modeling result is limited by the lo-

al optimum. The complexity energy function increases probability

f falling into local optimum. 

We propose a 3D facial expression modeling method based

n Kendall theory. The method includes three steps: 1.We extract

he facial landmarks from a facial image to construct a 2D facial

andmarks based model; 2.We build Kendall shape space based

n 2D facial landmarks models with different poses of Faceware-

ouse (Facewarehouse is a classical 3D facial expression database);

.We input the 2D facial landmarks model as source into Kendall

hape space and search the target 3D facial landmarks model of

he database. Using the target 3D facial landmarks model, we can

ecover the target 3D facial data. Compared to traditional meth-

ds, our method has two advantages. Firstly, the computation cost

s lower. In Kendall shape space, the face data is represented by

 standard form, the head poses and scale are removed to a cer-

ain extent. The fitting computation is reduced obviously. Secondly,

he fitting process in Kendall shape space can be regarded as a

https://doi.org/10.1016/j.neucom.2019.04.050
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.04.050&domain=pdf
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Fig. 1. The pipeline of our facial expression modeling method. 
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geodesic path search between different faces. It is a global optimal

scheme with shape space restriction. The result is more accurate

and stable. In Fig. 1 , we show the pipeline of our method. 

In summary, our main contributions are as follows: 

(1) We propose a 3D facial expression modeling framework

from 2D facial image to 3D model. The modeling result re-

mains the original 2D facial information includes head pose

and expression. 

(2) We propose a facial expression synthesis method in Kendall

shape space. The method is called path search in Kendall

shape space (PSKS). Using the method, we can achieve an

accurate and stable 3D fitting face from 2D facial image

which is not limited by local optimum. 

(3) We propose a facial expression representation which is

based on facial landmarks. The representation is called dis-

crete landmark model (DLM). It can be used to fitting 2D

facial image to 3D facial model in Kendall shape space. 

The other parts of our paper are organized as following. In

Section 2 , we discuss some related works of facial expression mod-

eling. In Section 3 , we introduce the fundamentals of shape space.

In Section 4 , we illustrate the representation of facial expression

which is based on facial landmarks. In Section 5 , we illustrate

the facial expression modeling method in Kendall shape space. In

Section 6 , we show the facial expression modeling performance of

our method. 

2. Related works 

Facial expression modeling has been researched for many years.

The related works can be divided into five parts: 2D face modeling,

3D geometric modeling, 3D static modeling, 3D dynamic modeling

and 3D facial expression modeling by deep learning and manifold

learning. The methods based on 3D static modeling and 3D dy-

namic modeling have been used in many applications such as face

synthesis and facial animation. 

2D face modeling methods construct face model based on 2D

image features. The features include face contour, facial feature

landmarks and texture. Cootes proposed the classical face model-

ing methods: Active Shape Model (ASM) [3] and Active Appear-

ance Models (AAM) [4] . The method was used to represent the

facial features by facial landmarks. Based on the methods, some

improved algorithms [5,6] were proposed for precise facial expres-

sion analysis. Huang and Huang [7] proposed a 2D facial modeling

method for facial expression recognition. The facial features were

represented by facial landmarks and facial contour. Some methods

constructed face space to analysis facial images. The face space was

based on principal component analysis (PCA). Penev and Sirovich

[8] analyzed the performance of the face space and proposed sev-

eral improvement solutions. Chen and Huang [9] used the similar

method to facial expression clustering. Paul and Gavrilova [10] pro-

posed a geometric facial modeling method for face detection. The

modeling process was based on face space. Generally, the feature
xtraction of 2D face modeling methods was convenient to imple-

ent. However, the influence of different head poses was difficult

o be removed. 

3D geometric modeling methods extracted geometric features

rom multi-facial images or 3D facial data to construct facial

odel. Decarlo et al. [11] used anthropometric facial features to

uild facial model. Lee et al. [12] constructed facial model by

ulti-views of facial data. To combine the facial images, the fa-

ial contours were used to achieve the optimization result. Ansari

nd Mohamed [13] proposed an automatic facial modeling method

y two orthogonal views of facial data. The method was employed

or 3D face recognition. Wang et al. [14] proposed a facial ex-

ression analysis method by surface geometric features analysis.

oyel and Demirel [15] proposed 3D distance-vector features for

acial expression recognition. The features were based on facial

eatures measurement. Peng et al. [16] propose a face modeling

ethod which is based on surface B-Spline reconstruction. Zhan

t al. [17] propose a 3D face modeling method which is based

n Sparse Iterative Closest Point. Zhenbo et al. [18] provided a

acial expression recognition method which was based on multi-

evel appearance features. Wu et al. [19] proposed a multi-view fa-

ial expression feature coding method based on multi-layer feature

odel. Such methods constructed facial features from multi-facial

mages or 3D facial data directly. Although the influence of head

ose was considered in facial modeling, it was difficult to achieve

acial representation with accurate facial expression. 

3D static modeling methods have been researched for many

ears. The basic idea of the method was constructing a static fa-

ial feature space. In the space, the face modeling process was

ransferred to a linear optimization problem. Blanz and Vetter

20] proposed the classical facial modeling method: 3D morphable

odel (3DMM). 3DMM was used to reconstruct 3D facial data with

pecial characteristics such as gender and age. Blanz and Vetter

21] used the same method for 3D face recognition. Paysan et al.

22] improved the 3DMM for pose and illumination invariant face

ecognition. Mena-Chalco [23] proposed the similar method for

ace modeling with different expressions. Pighin et al. [24] pro-

osed facial photographs regenerate method by 3D shape morph-

ng. Bas et al. [1] proposed a 3DMM fitting method which was con-

idering the edge information. The method improved the image

tting speed. Booth et al. [25] proposed a framework for 3DMM

ith large scale. Duan et al. [26] proposed a 3D face modeling

ethod based on partial least squares regression. The static model-

ng methods constructed a face space by facial features analysis. In

ace space, different faces were transferred to regular representa-

ion. It reduced the complexity of face analysis. However, the per-

ormance of the methods were limited by the facial samples. For

acial expression modeling, the method required more computa-

ion. 

3D dynamic modeling methods constructed facial model based

n various facial samples with different expressions. Lu and Jain

27] proposed a deformation modeling method for 3D face match-

ng. Ichim et al. [28] proposed 3D facial modeling method in
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obile phone. The reconstruction 3D facial data included texture

nd wrinkle. Jin et al. [29] used the facial frontal and side im-

ges to reconstruct the high-fidelity 3D facial model. Some meth-

ds proposed a core tensor space to reduce the computation of fa-

ial reconstruction. Vlasic et al. [30] proposed the multilinear mod-

ls for facial expression modeling. Mpiperis et al. [31] proposed the

acial expression recognition methods by the same framework. Cao

t al. [2] proposed a facial expression database (Facewarehouse)

hich was constructed the multilinear models with facial surface

tting. The framework was used in face tracking and facial ani-

ation [32] . Gao and Tian [33] proposed a face modeling method

or face recognition, which was based on tensor subspace analy-

is. Song et al. [34] developed a face recognition method based on

ocal tensor model. Generally, the reconstruction process of such

ethods required optimize an energy equation. The local optimiza-

ion also limited the quality of facial modeling. 

Deep learning & Manifold learning for face expression model-

ng were researched in recent years. The methods based on deep

earning framework used various facial features in facial modeling

rocess. Elaiwat et al. [35] proposed a Restricted Boltzmann Ma-

hines (RBM) based method for facial expression analysis. Zhang

t al. [36] proposed a multi-facial images Deep Neural Network

DNN) for facial expression recognition. Lopes et al. [37] proposed

 facial expression samples extend method based on Convolutional

eural Networks (CNN). Huibin [38] constructed Deep Fusion Con-

olutional Neural Networks (CNN) for multi-model based facial ex-

ression analysis. The methods based on manifold framework were

econstructing facial model under the restriction of the manifold.

runton et al. [39] introduced the shape space for facial data anal-

sis. Kurtek and Drira [40] used the elastic measure in shape space

o analysis different 3D faces. Alashkar et al. [41] mapped the 3D

acial data flow into Grassmann manifold for facial recognition. Pa-

el and Smith [42] combined static facial modeling and manifold

earning framework for facial modeling. The deep learning frame-

orks could achieved better facial expression recognition results.

owever, for 3D facial expression modeling, the frameworks were

oo complicated. In our method, we construct the facial expression

odeling in a Kendall shape space which is a manifold based on

iscrete points. In following parts, we will discuss the details of

ur method. 

. Fundamentals 

Our method is based on the theory of Kendall shape space

43] . Shape is an important concept to describe the geometric in-

ormation of object, especially for facial expression models which

ave complicated external form and contours. Comparing the sim-

larity between different shapes is a challenging task. The shape

hould be invariant in some symmetric transformations such as

caling, translation and rotation. For mathematic descriptions of

hape, there is a theory which is called shape space. Shape space

s a quotient space of isometric Lie group actions. Different sym-

etric transformations such as scaling, translation and rotation are

egarded as a Lie group acting smoothly on a manifold. Defining

 metric in the manifold by geodesic distance, the similarity of

hapes can be computed and the influence of symmetric transfor-

ations can be removed. 

/G = { [ p] | p ∈ M } (1) 

 M/G ( [ p] , [ q ] ) = inf 
g∈ G 

d M 

( p, g.q ) (2) 

.D �→ (b, a, O ; D ) �→ aO.D + b . 1 k (3)

In Eq. (1) , G is a Lie group acting smoothly on a manifold M . For

 in M , the orbit of p is defined as [ p ]. In generally, the metric in
uotient space is hardly achieved, it should be computed indirectly.

n Eq. (2) , the metric in quotient space is achieved by optimization

earching from group action in M . In Eq. (3) , we provide the group

ction G which includes translation b , scaling a , rotation O . 1 k =
(1 , 1) ∈ R 1 ×k .g ∈ G, q ∈ D . 

A classical method to construct a shape space through discrete

oints is called Kendall shape space. Kendall shape space provides

tatistical shape analysis tools to measure the similarity between

ifferent shapes. The discrete points’ distribution can be regarded

s a shape of the points’ set. Using Kendall theory, the facial land-

arks sets, as the discrete points’ sets, can be compared. 

 = R 

m ×k \{ 0 } , D ∈ M, D = ( x (1) , . . . , x (k ) ) (4)

In Eq. (4) , Kendall shape space is defined. The k is the num-

er of points in a shape. M is the manifold and the dimension of

 is m × k. D is the discrete point sets. To construct the Kendall

hape space, the three symmetric transformations should be re-

oved. We define two discrete point sets D ( a ) and D ( b ). In Kendall

hape space, the shape measurement of the D ( a ) and D ( b ) can be

epresented by Eq. (5) . 

 Kendall ( D (a ) , D (b) ) = inf 
g∈ G 

d M 

( D (a ) , g.D (b) ) (5) 

For discrete point set, removing scaling and translation just re-

uires simple computation. The centroid of discrete point set is

omputed. The influence of scaling and transfer can be removed by

entroid alignment and scaling normalization. In Eq. (6) , we show

he process. 

 s (a ) = 

D (a ) 

s (D ) 
, ̄x = 

1 

k 

k ∑ 

j=1 

x ( j) , s (D ) = 

( 

k ∑ 

j=1 

∥∥x ( j) − x̄ 
∥∥) 1 / 2 

(6)

Using the result of Eq. (6) , we can rewrite the Eq. (5) to Eq. (7) .

 represents the rotation group. S k m 

represents the pre-shape space

f Kendall shape space. 

 Kendall ( D (a ) , D (b) ) = inf 
O ∈ G 

d S k m 
( D s (a ) , O. D s (b) ) (7) 

To remove the influence of rotation, there have several meth-

ds. In Kendall shape space, the process can be transferred to a

ingular value decomposition problem. The computation can be in-

erpreted as the alignment of eigenvectors in matrix. In Eq. (8) , we

how the computation. Z is orthogonality of D s . 

 S k m 
( Z (a ) , O.Z (b) ) = arccos tr(R �) 

Z (b) Z (a ) t = U �V , R ∈ SO (m ) (8) 

In Kendall theory, the orthogonality is optimally registered

or the rotation group O . Combining the different equations, we

chieve the final computation for geodesic distance representation

n Eq. (9) . 

 Kendall ( D (a ) , D (b) ) = in f d S k m 
( Z (a ) , O.Z (b) ) = arccos tr( �) (9) 

Using the geodesic distance, we can compute the similarity of

ifferent shapes with discrete points. Following the geodesic path

n the space, the new shape can be generated. In Eq. (10) , we show

he new shape in the geodesic path between two shapes. 

 (k ) = 

1 

sin (θ ) 
( sin (θ (1 − k )) D (a ) + sin (θk ) D (b)) 

θ = d(D (a ) , D (b)) , k ∈ [0 , 1] (10) 

In our method, we transfer the facial data to a discrete points

ased representation. Then we can use the tools of Kendall shape

pace to measure different faces and generate new face. The facial

xpression modeling result can be achieved from facial image by

eodesic path search in the space. 
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4. Facial expression representation 

In Kendall theory, the shape is represented by discrete points.

To use the relevant tools of Kendall theory in facial expression

modeling, we should find a facial expression representation with

register facial landmarks. We propose a discrete landmarks model

(DLM) to represent the facial features. The DLM is based on fa-

cial landmarks. Based on facial image, the DLM is constructed by

2D points. For 3D facial object, the DLM is constructed by the 3D

points. The DLM provides generally facial representation of 2D fa-

cial image and 3D facial object. We use the classical facial land-

marks detection method [44] to extract the landmarks positions

from facial image. The construction process of DLM include three

parts: 1. translation remove equation; 2. scaling remove equation;

3. rotation alignment equation. In Eq. (11) to Eq. (13) , we show the

construction of DLM. 

F = { x 1 , . . . , x k } , B ∈ F 

L = { v 1 , . . . , v k } , v i = x i − B (11)

In Eq. (11) , F is the set of the facial landmarks, B is the bench-

mark of F . The benchmark is used to uniform location of the land-

marks from different faces. We select the nasal tip from F to be the

benchmark. L is the set of landmark vectors which are obtained by

the landmarks minus the benchmark. Then we achieve the prelim-

inary landmarks model. 

s (L ) = 

( 

k ∑ 

i =1 

‖ 

v i ‖ 

) 

L s = { v ′ 1 , . . . , v ′ k } , v ′ i = 

v i 
s ( L ) 

, 

k ∑ 

i =1 

∥∥v ′ i 
∥∥ = 1 (12)

In Eq. (12) , s is the scale of the L . Different scale of L influ-

ences the analysis of facial features relative positions. The land-

marks model should have a unique scale. To remove the scaling

factor, we normalize L by s . The new landmarks model L s is con-

structed. The representation of L s is consist to the discrete points

group in Eq. (6) . 

In Kendall theory, rotation is removed by the computation in

Eqs. (8) and (9) . In our method, we use a simple method to in-

stead the process. The DLM is constructed by facial landmarks. The

landmarks include semantic information. We can construct a local

coordinate system by certain landmarks to align the facial land-

marks. 

L sr = { T (v ′ 1 ) , . . . , T (v ′ k ) } (13)

d Kendall ( L sr (a ) , L sr (b)) = arccos ( L sr (a ) · L sr (b)) (14)

In Eq. (13) , we achieve the L sr , which is the final representa-

tion of DLM. For the vectors in L s , the rotation factors are still ex-

isting. The influence comes from the different head poses of 3D

facial data. We introduce transform function T to remove the ro-

tation from the landmarks model. The function T is a coordinate

transformation based on a local coordinate system. We select the

landmarks around the nose to build the coordinate system which

are robust to facial expressions. The geodesic distance of differ-

ent DLMs can be computed in Eq. (14) , which is transferred from

Eq. (9) . In Fig. 2 , we show the instance of local coordinate system.

For 2D facial image, the DLM representation is regarded as a 2D

reflection of 3D facial data. The task of 3D facial expression mod-

eling from 2D facial image can be transferred to DLM reconstruc-

tion from the 2D reflection. Using the DLM, we achieve the fitting

method between 3D facial model and 2D facial image. For coor-

dinate system construction in 3D face object, the facial landmarks

detection results can be achieved by [45] . 
. Facial expression modeling 

Facial expression modeling is constructing the best fitting re-

ult from template facial database to source facial image. Based on

he DLM representation, the modeling process can be processed by

eodesic path searching in Kendall shape space. The similarity of

ifferent DLMs can be computed by Eq. (14) , which is employed to

epresent the energy function to show the modeling process. 

The function represents the geodesic distance of the DLMs in

endall shape space. S image represents the facial landmarks from

acial image, L sr ( S image ) represents the DLM of S image . T r represents

he target DLM which is constructed from the DLM tensor of tem-

late facial database to fit the source DLM in facial image. To

onstruct DLM tensor from the database, we sign the 68 facial

andmarks in the face object manually. The face samples in the

atabase are aligned and the landmarks can be mapped into dif-

erent samples. Based on the DLM tensor, the modeling process

inimizes the distance energy E synthesis to achieve target DLM. In

q. (15) , we show the energy function. 

 synthesis = d Kendall ( L sr ( S image ) , L sr ( T r )) (15)

To achieve the target DLM L sr ( T r ) with minimum E synthesis , we

ropose the synthesis algorithm: Path Search in Kendall Shape

pace (PSK S). PSK S searches the geodesic path in Kendall shape

pace to reduce the E synthesis between generate DLM from database

nd source DLM from facial image. Searching process includes

hree directions: rotation, expression and identity. The PSKS is fol-

owing the directions to recover the target DLM to fit source DLM.

he target DLM can be generated after the optimization process.

he facial model can be reconstructed by the target DLM. 

.1. Path search in Kendall shape space (PSKS) 

We introduce the process of PSKS. In Fig. 4 , the blue point

epresents the source DLM. The path search in Kendall shape

pace(PSKS) is employed for DLM construction. For PSKS, an ini-

ialization DLM from DLM tensor should be computed at first. It

s used to be start point in Kendall shape space. The DlM from

emplate facial database is a 3D DLM. However, the DLM in facial

mage is 2D DLM. To compare the two kinds of DLM in Kendall

hape space, we rotate each 3D DLM from database to achieve 2D

eflection of DLM. Combining the new samples by rotation, the 3D

LM are organized to a 2D DLM tensor, which includes rotation,

xpression and identity). The initialization DLM is the one with the

inimum E synthesis from the tensor. In Fig. 3 , we show the tensor

ith the direction indexes. 

Starting from the initialization DLM, we synthesis the new

LMs by PSKS. The basic idea of PSKS is updating the DLM in a cer-

ain direction. Through changing the updating direction iteratively,

he new DLM is achieved which reduce the distance energy. The

endall shape space is not a linear space. In Kendall shape space,

he new DLM can’t be achieved by a linear method. We can only

se the tools of Kendall theory to synthesis the target DLM. Follow-

ng the limit of the searching process in Kendall shape space, we

xplain the implementation of PSKS which is based on Eqs. (9) and

10) . In Fig. 4 , we show an instance of PSKS in a certain direction

expression). 

The DLM includes three attributes: angle, expression and iden-

ity, which are consistent with directions of PSKS. From the DLM

ensor, we achieve the initialization DLM which has minimum dis-

ance energy. We extract the attributes of initialization DLM. The

LM construction can be divided into different attributes opti-

ization independently. For expression optimization, we extract

he candidate expression DLM set from the DLM tensor which

ave same identity and rotation information of initialization DLM.

e call the set to expression DLM set. The DLM in the set have
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Fig. 2. The instances of local coordinate system by serval facial landmarks. In 3D scene, the points of P 1 , P 2 , N 1 , N 2 are landmarks around the nose area. The point Q is pedal 

of vector P 1 P 2 and Q which is computed by P 1 P 2 × N 1 N 2 . In 2D scene, the local coordinate system can be achieved by the P 1 P 2 . 

Fig. 3. The tensor of DLMs from Facewarehouse. 

Fig. 4. The instance of expression searching by PSKS in Kendall shape space. 
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I  
ame angle and identity attributes to the initialization DLM. Firstly,

e compute the start DLM from the expression DLM set with the

inimum distance energy to the source DLM. In Fig. 4 B, the red

oint represents the start DLM. Secondly, we compute a set of new

LMs by geodesic path searching in Kendall shape space. We call

he DLM set to temporary expression DLM set. In Fig. 4 C, the red
oints represent temporary expression DLM set. In temporary ex-

ression DLM set, each new DLM is generated by Eq. (10) . The start

LM represents the D ( a ), the other DLMs of the set represent the

 ( b ). Then we update the new start DLM from temporary expres-

ion DLM set which has minimum distance energy to source DLM.

n Fig. 4 D, the red point represents the new start DLM. According
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Algorithm 2 Facial model regenerate. 

Require: Path searching list. 

1: Extract the list of identity searching record I and first. 

2: Extract the list of expression searching record E. 

3: Extract the angle of rotation. 

4: Set facial expression model set F L 

5: for do i to 20//20 is the number of expressions for single per- 

son in tensor. 

6: Extract the first model in I to init target face model F . 

7: The expression index is i 

8: for do j in I 

9: Extract the model F j by the expression i , identity j. 

10: Generate new model F new 

by Equation 10( F , F j ). 

11: F = F new 

. 

12: end for 

13: Put the F into F L . 

14: end for 

15: for do i in E 

16: Extract the model F i by index i in F L . 

17: Generate new model F new 

by Equation 10( F 2 , F i ). 

18: F 2 = F new 

. 

19: end for 

20: Rotate the F 2 by the angle 

Ensure: F 2 

Algorithm 3 Facial expression modeling process. 

Require: facial image S. 

1: Extract the facial landmarks S image . 

2: Construct source DLM L sr (S image ) . 

3: Construct DLM tensor from facewarehouse. 

4: Searching the DLM tensor to achieve the initialization DLM 

L sr (T init ) . 

5: Initialize the E synthesis by L sr (S image ) and L sr (T init ) . 

6: while 

7: do L sr (T expression ) = Expression 

Searching( L sr (T init ) , L sr (S image ) ). 

8: L sr (T ident it y ) = Identity Searching( L sr (T expression ) , L sr (S image ) ). 

9: L sr (T rotation ) = Rotation Searching( L sr (T expression ) , L sr (S image ) ). 

10: L sr (T init ) = L sr (T rotation ) . 

11: E temporary = Equation 15( L sr (S image ) and L sr (T init ) ). 

12: if ( then E temporary < E synthesis ) 

13: E synthesis = E temporary . 

14: else 

15: L sr (T r ) = L sr (T init ) . 

16: Jump out 

17: end if 

18: end while 

19: Regenerate (path searching list). 

Ensure: the facial expression model. 

J  

s  

5  

f  

2  

c  

b  

a  

i  

b  

t  

c  

D

to the step of k in Eq. (10) and iterative update start DLM, the fi-

nal DLM is computed (red point in Fig. 4 G). For identity searching,

the process of PSKS is the same as expression searching. For angle

searching, we rotate the angle of the start DLM to fit the source

DLM. Through searching the geodesic path by the three directions

iteratively, we achieve the final fitting DLM when the distance en-

ergy is converged. Algorithm 1 outlines the process of searching

expression direction by PSKS. 

Algorithm 1 Expression searching by PSKS. 

Require: Initialization DLM L sr (T init )and source DLM L sr (S image ) . 

1: Extract the attributes angle and identity of initialization DLM. 

2: Extract the candidate expression DLM set. 

3: Set searching parameter step k = 0 . 1 . 

4: Set E synthesis = Equation 15(L sr (S image ) andL sr (T init ) ). 

5: while Search geodesic path from start DLM to DLM set. do 

6: Temporary expression DLM set = Equation9 (start DLM, can-

didate expression DLM set, k = 0.1). 

7: for do i in Temporary expression DLM set 

8: E i = Equation 15(L sr (S image ) , L sr (T i )) . 

9: Select the minimum E i . 

10: Select the corresponding DLM L sr (T i ) . 

11: List ident it y = GPSD(identity DLMs); 

12: if ( then E i < E synthesis ) 

13: E synthesis = E i . 

14: Start DLM = L sr (T i ) . 

15: Record L sr (T i ) into path searching list 

16: else 

17: Out 

18: end if 

19: end for 

20: end while 

Ensure: L sr (T init ) with the path searching list 

5.2. Model regenerate by DLM 

Using the PSKS to reduce the distance energy, we achieve the

target DLM with path searching list of 3 directions. However, the

DLM is a discrete landmarks model which cannot be used to repre-

sent the global face model. The face model should be reconstructed

by target DLM and path searching list in Kendall shape space. 

The path searching list includes three directions. The process of

model regenerate is following different directions. Firstly, we con-

struct the facial model with identity attribute. The path searching

list records the searching paths of identity. We select the corre-

sponding facial model in facial database. Then we achieve an fa-

cial expression set of face models with the same identity and dif-

ferent expressions by Eq. (10) . Secondly, we follow the expression

direction of path searching list to generate the facial model from

the expression set. The process is similar to PSKS for expression in

Fig. 4 . Finally, we rotate the facial model by the angle record from

the path searching list. Algorithm 2 shows the regenerate process.

Combining the PSKS and model regenerate, the final fitting result

of facial expression modeling is achieved. The whole process is

shown in Algorithm 3 . In Fig. 5 , we show the process of face model

regenerate. We also show the model regenerate result by different

iterative steps in Fig. 6 . 

6. Experiments and application 

We evaluate the performance of our facial expression model-

ing method in four public facial database: JAFFE, LFW, Helen and

RAF-DB [46,47] . JAFFE is a facial expression database. It includes 213
apanese facial images with different expressions. LFW is a clas-

ical facial image database. It includes 13233 facial images from

749 persons. It is widely used in facial landmarks detection and

acial recognition. Helen is another facial database which includes

330 facial images. RAF-DB is a wild facial database which has ac-

urate facial expressions labels. We use the Facewarehouse [2] to

e the template facial database. Around the different coordinate

xes( X, Y, Z ), we achieve 125 DLM reflections for each face model

n template facial database. The rotation step is 15 degrees. Com-

ining the new samples by rotation, the face models are organized

o a tensor (125 ∗20 ∗150, rotation, expression and identity). The fa-

ial expression modeling process of our framework is based on the

LM tensor. 
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Fig. 5. face model regenerate from target DLM and path searching list. 

Fig. 6. Facial expressions modeling result by different iterative steps of our method. 
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.1. Evaluation for facial landmarks’ distortion 

In our framework, positions of facial landmarks affect the DLM

onstruction. It cannot guarantee the accuracy of each facial land-

ark is detected using a detection method. Therefore the evalu-

tion of our face modeling method with some facial landmarks’

istortion is important. To evaluate the sensitive of our method for

 synthesis optimization, we add two sets (L1 and L2) of random dis-

lacements to the landmark subset in LFW; randomly selecting 8

nd 16 facial landmarks from different facial regions and adding

he randomly displacements( ≤ 5mm). One set of the landmarks’

ovement is signed in Fig. 7 A. In Fig. 7 B, the E synthesis reduction

urve graph is provided for different iteration steps and different

andmarks sets. We employ the method [1] to be a competitor

hich is also based on the facial landmarks to achieve face mod-

ling result. 
.2. Evaluation in JAFFE 

The facial images in JAFFE have clearly expression labels. The

abels include angry, disgust, fear, neutral, sadness, happiness and

urprise. Some expressions with different labels are difficult to dis-

inguish. We reclassify the facial images into 4 new expression

abels: Annoy (angry, disgust, fear, and sadness), Happy (happi-

ess), Surprise and Normal (neutral). We build the modeling test

et for each label. To evaluate the modeling accuracy, we propose

he Kendall error which is computed by the facial landmarks in

q. (15) which has been discussed in [43] . The Kendall error is

he geodesic distance between 2D facial source image DLM and

D facial DLM. It reflects the shape similarity of the facial expres-

ions. We compare the Kendall error of different modeling method:

D morph model (3DMM) [1] , bilinear model [2] and our modeling

ethod. In Fig. 8 , we show some modeling instances by different
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Fig. 7. E synthesis reduction curve graph for two methods with two set of facial landmarks distortions. In B, the longitudinal axis represent the E synthesis value,the transverse axis 

represent iterative step in optimization process. 

Fig. 8. Facial expression modeling results by different methods in JAFFE. Source facial images are shown in first row. The modeling results by different method are shown 

in other rows (Row 2: 3D morph model, Row 3: Bilinear model, Row 4: Our method. 

Fig. 9. Kendall error comparisons for different expressions in JAFFE. 
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method. In Fig. 9 , we show the Kendall error bar graph(the Kendall

error is introduced by Kendall [43] ) by different methods in differ-

ent expression sets. 

6.3. Evaluation in LFW & Helen 

The facial images in LFW and Helen are closer to application

scene. The databases include different facial expressions and head
oses. It takes a big challenge for expression modeling. To evaluate

he accuracy of our expression modeling methods in different head

oses, we use our modeling methods in LFW and Helen to com-

ute the Kendall error. In order to evaluate the poses robustness

f our method further, we build two subsets from LFW and He-

en. The facial data in the subsets have obviously head poses (10 0 0

n LFW and 300 in Helen, the rotation of the head pose is bigger

han 15 degrees). In Figs. 10 and 11 we show some instances of
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Fig. 10. Facial expression modeling results by different methods in LFW. (Row 2: 3D morph model, Row 3: Bilinear model, Row 4: Our method). 

Fig. 11. Facial expression modeling results by different methods in Helen. (Row 2: 3D morph model, Row 3: Bilinear model, Row 4: Our method). 
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odeling result by different methods. In Fig. 12 , we show the

endall error bar graph by different methods in different facial im-

ge sets. 

.4. Evaluation in RAF-DB 

Based on facial expression modeling method, the facial expres-

ion can be measured to a certain extent. We provide a expression

lassification evaluation based on test set from RAF-DB. We select

 subset from the RAF-DB to be the reference group. According
o the modeling result of PSKS, the geodesic path parameters can

e recorded. We map the records from different models into the

ame DLM identity model, which can be regarded as the identity

ttribute removing. Then we achieve the DLM expression model

ith same identity attribute from different faces. We select 300 fa-

ial images (100 samples ∗ 3 expression labels) to be the reference

roup. The DLM expression models are computed from the refer-

nce group. To achieve the final expression recognition result, we

ompute the distance between the DLM expression model from in-

ut facial image and the models in reference group. The DLM with
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Fig. 12. Kendall error comparisons for different poses in LFW & Helen. (LFW1 and Helen1 are original LFW and Helen databases. LFW2 and Helen2 are the facial data sets 

with obviously rotation). 

Fig. 13. Facial expression modeling results in RAF-DB. 

Fig. 14. Expression editing in 3D face expression model. 

Table 1 

Facial expression classification rate in RAF-DB. The expres- 

sion label of Negative includes serval labels include: Dis- 

gusted and Sad. The expression label of Exaggerated in- 

cludes serval labels include: Surprised, Fearful and Angry. 

Expression Label Happy Negative Exaggerated 

RAF-DB 91% 85% 93% 

Table 2 

Facial expression modeling speed by different methods (Av- 

erage time cost by second). 

Method JAFFE LFW Helen 

3DMM 89 s 85 s 103 s 

Bilinear Model 45 s 52 s 72 s 

Our method 21 s 27 s 33 s 
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minimum distance is selected and the corresponding expression

label is output. In Fig. 13 , we show some instances of expression

modeling. In Table 1 , we show the expression classification rate. 

6.5. Application for facial expression editing in image 

Based on our modeling method, the facial expression in the im-

age can be edited. In model regenerate process, we have intro-
uced that the facial expression model can be reconstructed by

arget DLM and path searching list. From the facial image to 3D fa-

ial expression model, the pixels can be mapped into the 3D facial

urface. Changing the expression record in path searching list, we

an achieve new 3D face object with a new expression. In Fig. 14 ,

e show the expression editing result in a 3D face model. The pix-

ls can be updated according to the facial expression editing in 3D

ace model. Finally, facial expression editing for facial image can

e processed. In Fig. 15 , we show some facial expression editing

esults from facial images. 

.6. Summary of results 

We compare different methods for facial expression modeling.

he 3DMM reconstructs 3D facial model with accurate head poses.

owever, the method can’t reconstruct the accuracy facial expres-

ions. The face space by 3DMM hasn’t accurate expression fea-

ures. Therefore the Kendall error of 3DMM is much higher than

ther methods. The bilinear model can achieve the better facial

xpression result which is based on the regular facial expression

atabase. However, the accuracy of the expression modeling is af-

ected by the variety of facial samples in the face database. The lin-

ar optimization process of expression regenerate in the database

an’t achieve the accurate expression reconstruction model. The

DMM and bilinear model are core spaces which neglect some
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Fig. 15. Expression editing in facial images. 

Table 3 

Kendall error of different modeling methods. 

Face database JAFFE LFW Helen 

Method Annoy Happy Surprise Normal LFW1 LFW2 Helen1 Helen2 

3DMM 0.1581 0.1421 0.1682 0.1365 0.1456 0.1521 0.1418 0.1513 

Bilinear Model 0.1311 0.1315 0.1365 0.1228 0.1387 0.1408 0.1350 0.1377 

Our method 0.1205 0.1218 0.1266 0.1160 0.1269 0.1218 0.1193 0.1188 
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eometric features from the face model. Some details of face mod-

ls have been removed in the modeling process. In our method,

e don’t lost the geometric details of the original face model.

he model regenerate is based on the original facial database. The

odeling process is driven by DLMs and PSKS. Using our method

an achieve more accurate facial expression information. The fit-

ing speed of our method is faster. In Table 2 , we compare the

verage fitting speed of different methods. In Table 3 , we com-

are the average Kendall error of different methods. Based on our

ethod, the simple expression classification task can be processed

ithout complex pre-process and data training process. 

. Conclusion 

We propose a 3D facial expression modeling method based

n Kendall theory. The method reconstructs the 3D facial model

rom 2D facial image while contains the accurate expression and

ead pose. We use facial expression representation (DLM) to fitting

he 2D facial image from 3D facial data. The DLM fitting is pro-

essed by PSKS in Kendall shape space. Using the DLM fitting re-

ult, the 3D facial expression model can be regenerated. Our mod-

ling method is robust to rotation, scaling and translation in facial
mages. The modeling result can reconstruct the accuracy 3D fa-

ial expression model by Kendall shape constraint. The optimiza-

ion process is following the certain directions and the fitting en-

rgy is not limited by the local peak. The fitting speed is faster

han other modeling methods. In future work, we will consider to

dd more facial features in the reconstruction process and provide

ccurate facial expression recognition method. We will extend the

ethod in different applications such as facial animation and face

ecognition. 
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